Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption
نویسندگان
چکیده
We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (lc-Si:H) solar cells can be enhanced by 4.5 mA/cm with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The lc-Si:H solar cells deposited on the improved plasmonic BR demonstrate a high photocurrent of 26.3 mA/cm which is comparable to the state-of-the-art textured Ag/ZnO BR. The commonly observed deterioration of fill factor is avoided by using lc-SiOx:H as the n-layer for solar cells deposited on plasmonic BR. VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802451]
منابع مشابه
Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملFlexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells
Photovoltaic light trapping theory and experiment do not always clearly demonstrate how much useful optical absorption is enhanced, as opposed to parasitic absorption that cannot improve efficiencies. In this work, we develop a flexible flux plane method for capturing these parasitic losses within finite-difference time-domain simulations, which was applied to three classical types of light tra...
متن کاملDistributed Reflector Structure and Diffraction Grating Structure in the Solar Cell
Today, due to qualitative growth and scientific advances, energy, especially electricity is increasingly needed by human society. One of the almost endless and pure energy which have been paid attention over the years is the solar energy. Solar cells directly convert solar energy into electrical energy and are one of the main blocks of photovoltaic systems. Significant improvement has been made...
متن کاملExperimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application
A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts f...
متن کاملComparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.
Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013